ON THE STABIUIZATION OF UNSTLABLE MOTIOAS OR MEPHANICAL SYeTEMS

FMM Vol.28, № 3, 1964, pp.493-501
M.S.GABRIELIAN
(Sverdlovsk)
(Received December 6, 1963)

Consideration is given to the problem of control forces which stabilize an unstable motion of a holonomic mechanical system. Sufficient conditions for controllability and stabilization along one of the coordinates are derived. Conditions for observability of the system motion along one coordinate or one velocity are determined. The problem of optimum stabilization in the presence of incomplete feedback is considered.

1. Formulation of the problem. Let us consider a mechanical system, the states of which are described by the curvilinear coordinates $q_{i}(t)(t \geqslant 0$ and $i=1, \ldots, n)$. Let a control force u act on the system, where this force is related to the curvilinear coordinates q_{1} and velocities $d q_{1} / d t$ by Equations

$$
\begin{equation*}
\frac{d}{d t} \frac{\partial T}{\partial q_{i}^{\prime}}-\frac{\partial T}{\partial q_{i}}=Q_{i}\left(t, q_{1}, \ldots, q_{n}, u\right) \quad(i=1, \ldots, n) \tag{1.1}
\end{equation*}
$$

where T is the kinetic energy of the system, θ_{i} is the generalized force corresponding to the coordinate q: .

Let there be given a motion $q_{1}=q_{:}{ }^{\circ}(t)$ which results from (1.1) for $u \equiv 0$ and for certain initial conditions

$$
q_{i}^{\circ}(0)=q_{i 0}=\mathrm{const}, \quad\left(d q_{i}^{\circ} / d t\right)_{t=0}=q_{i 01}^{(1)}=\mathrm{const}
$$

Let us assume that the motion $q_{1}=q_{1}{ }^{\circ}(t)$ is unstable in the sense of Liapunov [1]. The problem is to determine the force u which stabilizes the motion $q:{ }^{\circ}(t)$. Let us construct the equations of disturbed motion [1] ($p .21$) at the vicinity of $q_{1}{ }^{\circ}(t)$. Assuming that $s_{s}=q_{1}-q_{1}{ }^{\circ}(t)$, then Equations (1.1) will be of the form

$$
\begin{equation*}
\frac{d}{d t} \frac{\partial T}{\partial s_{i}^{\prime}}-\frac{\partial T}{\partial s_{i}}=S_{i}\left(t, s_{1}, \ldots, s_{n}, u\right) \quad(i=1, \ldots, n) \tag{1.2}
\end{equation*}
$$

which for $u \equiv 0$ possess the solution $s_{i}=0$. We will consider two problems.

Problem 1.1. Find the function

$$
\begin{equation*}
u=u\left(t, s_{1}, \ldots, s_{n}, s_{1}{ }^{\prime}, \ldots, s_{n}{ }^{\prime}\right) \tag{1.3}
\end{equation*}
$$

sich that the motion $s_{1}=0$ be asymptotically stable in the sense of Liapunov on the strength of the equations of perturbed motion (1.2) and (1.3).

Problem 1.2 . Find the function u such that the motion $s_{s}(t)=0$ be asymptotically stable on the strength of the equations of perturbed motion (1:2) and (1.3), and that at the same time the function

$$
\begin{equation*}
I=\int_{0}^{\infty} G\left[t, s_{1}(t), \ldots, s_{n}(t), s_{1}^{\prime}(t), \ldots, s_{n}^{\prime}(t), u(t)\right] d t \tag{1.4}
\end{equation*}
$$

be minimized along the motions $s_{1}(t)$ and $u(t)$ for the system (1.2) and (1.3).

Here G is a positive derinita analytic function of s_{1}, s_{1}, u for $t \geqslant 0$, and the following condition is satisfied
$G\left(t, s_{1}, \ldots, s_{n}, \dot{s}_{1}{ }^{\prime}, \ldots, s_{n}{ }^{\prime}, u\right)=\sum_{i, j=1}^{2 n} d_{i j} z_{i} z_{j}+d u^{2}+v\left(t, z_{1}, \ldots, z_{2 n}, u\right)$

$$
\left(z_{2 i-1}=s_{i}^{\prime}, z_{2 i}=s_{i}\right)
$$

Here the condition

$$
\begin{gathered}
\left|v\left(t, z_{1}, \ldots, z_{2 n}, u\right)\right| \leqslant \varepsilon\left(z_{1}^{2}+\ldots+z_{2 n}^{2}+u^{2}\right)^{1+\alpha} \\
\left(\varepsilon>0, \rho=\left(z_{1}^{2}+\ldots+z_{2}^{2}+u^{2}\right)^{1 / 2}<\delta, \delta>0, d>0\right)
\end{gathered}
$$

is fulfilled uniformly.
The quantity

$$
\sum_{i, j=1}^{2 n} d_{i j} z_{i} z_{j}+d u^{2}
$$

is a positive definite function.
2. The problem of atabilization. Let us assume that the linear approximation to the system is stationary and Equations (1.2) are of the form

$$
\sum_{j=1}^{n} a_{i j} s_{j}^{\prime \prime}=\sum_{j=1}^{n} b_{i j} s_{j}+b_{j} u+\gamma_{j}\left(t, s, s^{\prime}, u\right) \quad(i=1, \ldots, n)\left(S=\sum_{i, j=1}^{n} a_{i j} s_{i} s_{j}\right)
$$

where $a_{11}, b_{1 j}, b_{i}$ are constants, and S is a positive definite form, $b_{1,}=b_{11}$. It is assumed that condition
$\gamma_{i}\left(t, s_{1}, \ldots, s_{n}, s_{1}{ }^{\prime}, \ldots,\left.s_{n}\right|^{\prime}, u\right) \mid \leqslant \varepsilon \rho^{2} \quad(\varepsilon>0, \rho<\delta, \delta>0, i=1, \ldots, n)$
is fulfilled uniformly.

Without loss of generality, we may assume that $b_{1} \neq 0, b_{1}=0(t=2, \ldots, n)$. If $b_{i}=0$ and $b_{k} \neq 0$ for $f \neq \pi$ then it will be said that the system is subject to a force along the π th coordinate.

The linear approximation for Equation (1.2) will be of the form

$$
\begin{equation*}
\sum_{i=1}^{n} a_{1 i} s_{i}^{n}=\sum_{i=1}^{n} b_{1 i} s_{i}+u, \quad \sum_{i=1}^{n} a_{j i} s_{i}^{n}=\sum_{i=1}^{n} b_{j i} s_{i} \quad(j=2, \ldots, n) \tag{2.3}
\end{equation*}
$$

With the aid of a nonsingular linear transformation [2] (p.97)

$$
s_{i}=\beta_{i 1} y_{1}+\ldots+\beta_{i n} y_{n}
$$

the system will be reduced to normal coordinates

$$
\begin{equation*}
y_{i}^{\prime \prime}=\lambda_{i} y_{i}+\alpha_{1 i} u \quad(i=1, \ldots, n) \tag{2.4}
\end{equation*}
$$

Here ψ_{1} are the normal coordinates and the real numbers λ_{1} are the roots of Equation

$$
\begin{equation*}
\left|a_{i j} \lambda-b_{i j}\right|=0 \tag{2.5}
\end{equation*}
$$

The numbers $\alpha_{k i}$ satisfy Equations

$$
\begin{equation*}
\sum_{k=1}^{n}\left(\alpha_{k j} \lambda_{j}-b_{k j}\right) \alpha_{k i}=0 \quad(i, j=1, \ldots, n) \tag{2.6}
\end{equation*}
$$

The system (2.4) is replaced by the system

$$
\begin{gather*}
x_{2 i-1}^{\prime}=\lambda_{i} x_{2 i}+\alpha_{1 i} u, \quad x_{2 i}^{*}=x_{2 i-1} \tag{2.7}\\
\left(x_{2 i-1}=y_{i}^{\prime}, x_{2 i}=y_{i} ; i=1, \ldots, n\right)
\end{gather*}
$$

Let us formulate the conditions for solvability of problem 1.1. A sufficient condition for solvability of problem 1.1 is the following [3 and 4]. The system of vectors

$$
\begin{equation*}
A, B A, \ldots, B^{2 n-1} A \tag{2.8}
\end{equation*}
$$

must be linearly independent, where

It follows from the requirement of inear independence of vectors (2.8) that

$$
\Delta=\left|\begin{array}{ccccc}
\alpha_{11} & 0 & \cdots & \alpha_{11} \lambda_{1}^{n-1} & 0 \tag{2.10}\\
0 & \alpha_{11} & \cdots & 0 & \alpha_{11} \lambda_{1}^{n-1} \\
\cdot & \cdot & \cdots & \cdot & \cdot \\
\alpha_{i n} & 0 & \cdots & \alpha_{1 n}^{\lambda_{n}^{n-1}} & 0 \\
1 & \alpha_{1 n} & \cdots & 0 & \alpha_{1 n} \lambda_{1}^{n-1}
\end{array}\right| \neq 0
$$

We have

$$
\Delta=\alpha_{11}^{2} \ldots \alpha_{1 n^{2}}^{2}\left(\lambda_{2}-\lambda_{1}\right)^{2} \ldots\left(\lambda_{n}-\lambda_{1}\right)^{2} \ldots\left(\lambda_{n}-\lambda_{n-1}\right)^{2}
$$

Consequently, condition (2.10) can be expressed as

$$
\begin{equation*}
\text { 1. } \quad \lambda_{i} \neq \lambda_{j}, \quad 2 . \quad \alpha_{1 i} \neq 0 \quad(i, j=1, \ldots, n ; i \neq i) \tag{2.11}
\end{equation*}
$$

Conditions (2.11) are the conditions for controllability [5] of the linear system (2.7), 1.e. when (2.11) is fulfilled for any $T>0$ and any initial point x^{0}, there exists [5 and 6] a control $u(t)(0 \leqslant t \leqslant T)$, which translates the system (2.7) from the point $x=x^{0}$ to the point $x=0$ in time T. Furthermore, with conditions (2.11), we can indicate such a neighborhood of the point $x=0$ where there also is a control $u(t)$ for the nonlinear system (1,2) for each point x^{0} from this neighborhood, which will transfer the system (1.2) into the state $x=0$ for finite time T. According to [7], conditions (2.11) allow the system (2.7) to be transferrer from any point x^{0} into a point $x=0$ in time T also by the impulse control

$$
\cdot u=\eta_{1} \delta\left(t-t_{1}\right)+\ldots+\eta_{k} \delta\left(t-t_{k}\right)
$$

Here t, are instants when the function

$$
\varphi(t)=\left|l F^{-1}(t) \alpha\right|, \quad \alpha=\left\{\alpha_{11}, 0, \ldots, \alpha_{1 n}, 0\right\}
$$

has a strict maximum, $F(t)$ is the fundamental matrix of the system (2.7), and $1=\left\{1_{1}, \ldots, 1_{2 \mathrm{n}}\right\}$ is a solution of the problem $\min _{1} \max _{\tau}\left|2 F^{-1}(t)_{a}\right|$ for $\left(x_{0} 1\right)=-1$. It can be verified that under the conditions (2.11) and $\lambda_{1} \neq 0$, the function $\varphi(t)$ for any choice of 1 can have only isolated maximums. Thus, under conditions (2.11) and $\lambda_{1} \neq 0$ we can construct a sequence of force impulses directed along the first coordinate such that the system (2.7) will be transferred by these impulses from point x^{0} into the point $x=0$.

Let conditions (2.11) be fulfilled, then we can find the function

$$
\begin{equation*}
u=p_{1} x_{1}+\ldots+p_{2 n} x_{2 n} \tag{2.12}
\end{equation*}
$$

such that the system (2.7), (2.12) will be asymptotically stable. Consequently, according to a Liapunov theorem [1] (p.127), the system (1.2), (1.3) will also be asymptotically stable.

Let conditions (2.11) not be fulfilled. We will consider two cases.
case l. Let

$$
\lambda_{i} \neq \lambda_{j}, \quad \alpha_{1 i_{k}}=0 \quad(k=1, \ldots, p), \quad p<n, \quad \alpha_{1 j} \neq 0, \quad j \neq i_{k}
$$

Then, if among the numbers $\lambda_{i_{k}}$ there is at least one positive number, the system (2.7) will have oositive numbers among the roots of its characteristic equation for any choice of u (2.12). Consequently, according to a theorem by Liapunov, the system (2.7) is unstable for any choice of u (2.12).

If, on the other hand, all numbers $\lambda_{t_{k}}$ are negative, then (2.7) can be considered as two independent systems of the type

$$
\begin{gather*}
x_{2 i_{k}-1}^{\prime}=\lambda_{i_{k}} x_{2 i_{k}}, \quad x_{2 i_{k}}^{\prime}=x_{2 i_{k}-1} \quad(k=1, \ldots, p) \tag{2.13}\\
x_{2 i_{k}-1}^{\prime}=\lambda_{i} x_{2 j}+\alpha_{1 j} u, \quad x_{2 j}^{\prime}=x_{2 j-1} \quad\left(j \neq i_{k}\right) \tag{2.14}
\end{gather*}
$$

For the system (2.14) conditions (2.11) are fulfilled, and therefore, we can choose

$$
\begin{equation*}
u=p_{1} x_{1}+\ldots+p_{2 n} x_{2 n} \quad\left(i \neq i_{k}\right) \tag{2.15}
\end{equation*}
$$

such that the system (2.14), (2.15) be asymptotically stable. For such a choice of u the system of first approximation (2.7), (2.12) is stable and there are imaginary values among its characteristic numbers. The stability of the complete system is then determined by the terms of higher order of smallness [1] (p.137) [8].

If all $\lambda_{i_{k}} \leqslant 0$ and if at least one $\lambda_{t_{k}}=0$, then again a critical case arises; the stability of the complete system is again determined by the same terms.

Case 2 . Let

$$
\begin{equation*}
\lambda_{k}=\lambda_{k+1}=\ldots=\lambda_{k+p}=\lambda, \quad \alpha_{1 j} \neq 0 \tag{2.16}
\end{equation*}
$$

for at least one $f=k, \ldots, k+p$. Without loss of generality we will assume that

$$
\begin{equation*}
\lambda_{1}=\lambda_{2}=\ldots=\lambda_{p+1}=\lambda_{2} \quad \alpha_{1 p+i} \neq 0 \tag{2.17}
\end{equation*}
$$

Let us transform the coordinates

$$
\begin{equation*}
z_{j}=\sum_{k=1}^{j-+1} c_{j k} y_{k}, \quad z_{i}=y_{i} \quad(i=1, \ldots, p+1 ; i=p+2, \ldots, n) \tag{2.18}
\end{equation*}
$$

and require that

$$
\begin{equation*}
\sum_{k=1}^{p+1} c_{i k} \alpha_{1 k}=0 \quad(i=1, \ldots, p), \quad \sum_{k=1}^{p+1} c_{p+1 k} \alpha_{1 k} \neq 0 \tag{2.19}
\end{equation*}
$$

The system (2.4) is reduced to the form

$$
\begin{align*}
z_{i}^{\prime \prime}=\lambda z_{i} \quad(i=1, \ldots, p), \quad & z_{p+1}^{\prime \prime}=\lambda z_{p+1}+\sum_{k=1}^{p+1} c_{p+1 k} \alpha_{1 k} u \tag{2.20}\\
z_{i}^{\prime \prime}=\lambda_{i} z_{i}+\alpha_{1 i} u \quad & (i=p+2, \ldots, n)
\end{align*}
$$

It follows from (2.20) that if $\lambda>0$, the inear approximation (2.7), (2.12) 1s unstalie, consequently [1] (p.128), the complete system is also unstable.

If $\lambda \leqslant 0$, then the stability of the system is determined by the terms of
higher order of smallness.
It is known that problem 1.2 is solvable if problem 1.1 is solvable in the Inear approximation [9].

Thus, the following assertion is valid.
Theorem 2.1. If conditions (2.11) are fulfilled, then problems 1.1 and 1.2 are solvable. If conditions (2.11) are not fulfilled and

1) $\alpha_{1 i_{k}}=0(k=1, \ldots, p)$ and at least one of the numbers $\lambda_{i_{k}}>0$, then problems 1.1 and 1.2 are not solvable for $\lambda_{i_{k}} \leqslant 0$, but $\lambda_{i} \neq \lambda_{j}, i \neq i_{k}$, $j=i_{k}$ yields a critical case, i.e. the possibility of solvability of problem 1.1 depends on the terms of higher order of smallness.
2) if $\lambda_{1}=\lambda_{2}=\ldots=\lambda_{p+1}=\lambda$, but $\alpha_{1 p+1} \neq 0$, then problems 1.1 and 1.2 do not possess a solution for $\lambda>0$ and are reduced to critical cases if $\lambda \leqslant 0, \lambda_{i} \neq \lambda_{j}, \alpha_{1 i} \neq 0$ for $i>p+1$.

Let us consider now the linear approximation to problem 1.2 . If it is assumed [10 and 11] that the functional (1.4) in the first approximation becomes

$$
\begin{equation*}
I_{2}=\int_{0}^{\infty}\left[\sum_{i, k=1}^{2 n} d_{i k} x_{i} x_{k}+d u^{2}\right] d t \tag{2.21}
\end{equation*}
$$

then by minimizing it we obtain [12] the equations for u (2.12) and the Liapunov function V which ensures the asymptotic stability of the system (2.7), (2.12) in the form

$$
\begin{gather*}
\sum_{k=1}^{n}\left[\frac{\partial V(x)}{\partial x_{2 k-1}}\left(\lambda_{k} x_{2 k}+\alpha_{1 k} u\right)+\frac{\partial V(x)}{\partial x_{2 k}}, x_{2 k-1}\right]+\sum_{i, k=1}^{2 n} d_{i k} x_{i} x_{k}+d u^{2}=0 \tag{2.22}\\
u=-\frac{1}{2 d} \sum_{k=1}^{n} \frac{\partial V}{\partial x_{2 k-1}} \alpha_{1 k}
\end{gather*}
$$

The V function can be sought as a quadratic form, and the coefficients determined by equating to zero the coefficients of terms in (2.22).

The obtained algebraic equations have a solution then and only then when there exists a control $u=p_{1} x_{1}+\cdots+p_{2 \mu} x_{2 n}$, satisfying the conditions of the problem 1.1 in the linear approximation. This indicates a way for computing the control.
3. The problam of observation in the incar approximation. Problem 3.1 . Find a $2 n \times n$ matrix $V(\vartheta)$ such that

$$
\int_{t=-}^{t} V(\vartheta)\left\|\begin{array}{c}
\xi(\vartheta) \tag{3.1}\\
u(\vartheta)
\end{array}\right\| d \vartheta=\left\|\begin{array}{c}
x_{1}(t) \\
\cdot \\
x_{2 n}(t)
\end{array}\right\|, \quad \xi(\vartheta)=\sum_{i=1}^{2 n} c_{i} x_{i}(\vartheta) \quad(-\tau \leqslant \theta \leqslant 0)
$$

where $x_{i}(\vartheta)$ will be solutions of the system (2.7) and $u(\hat{\vartheta})$ is determined
by (2.12).
It $1 s$ known that the solution of problem 3.1 is given by Lemma 4.2 [9] under the conditions which in the stationary case assume the following form [5, 9 and 13]. The system (2.7) is observable then and only then when the vector system

$$
\begin{equation*}
C, B^{*} C, \ldots, B^{* 2 n-1} C \tag{3.2}
\end{equation*}
$$

is linearly independent. Here

$$
C=\left(c_{1}, \ldots, c_{n n}\right), \quad B^{*}=\left|\begin{array}{ccccc}
0 & 1 & \cdots & 0 & 0 \\
\lambda_{1} & 0 & \cdots & 0 & 0 \\
\cdot & \cdot & \cdots & . & . \\
0 & 0 & \cdots & 0 & 1 \\
0 & 0 & \cdots & \lambda_{n} & 0
\end{array}\right|
$$

Let us consider the case $C=\left(c_{1}, 0, c_{3}, 0, \ldots, c_{2 n-1}, 0\right)$, which corresponds to the observation of the system along a certain velocity, and the case when $C=\left(0, c_{2}, \ldots, 0, e_{2 n}\right)$ which corresponds to observation along a certain curviinnear coordinate.

The conditions of observability in the first case will be

$$
\begin{equation*}
c_{2 i-1} \neq 0, \quad \lambda_{i} \neq \lambda_{j} \quad(i, j=1, \ldots, n), \quad \lambda_{i} \neq 0 \tag{3.3}
\end{equation*}
$$

and in the second

$$
\begin{equation*}
c_{2 i} \neq 0, \quad \lambda_{i} \neq \lambda_{j} \quad(i, j=1, \ldots, n ; i \neq j) \tag{3.4}
\end{equation*}
$$

When conditions (3.3) or (3.4) are fulfilled, the matrix $V(\vartheta)$ is determined from Formula (4.20) of [9] or in other possible forms indicated in the paper cited.

Note, in particular, that under conditions (3.3) and (3.4) the first column of the $V(\vartheta)$ matrix can be chosen ([9], Equation (4.30)) in the form of a linear combination of 8 -functions

$$
V_{i 1}(\vartheta)=\sum_{k=1}^{m} \alpha_{k}^{i} \delta\left(\vartheta-\tau_{k}{ }^{i}\right)
$$

for a finite number of instants $\tau_{k}{ }^{1}$.
This means that at a given time the state $x_{1}(t), \ldots, x_{2 n}(t)$ of the system $d x_{2 i-1} / d t=\lambda_{i} x_{2 i}, \quad d x_{2 i} / d t=x_{2 i-1}$ under the conditions (3.3) or (3.4) can be restored by measurements of the quantity $\xi(t+\vartheta)$ at discrete instants of time $t_{k}{ }^{i}=t-\tau_{k}{ }^{i}$. The reasoning of Sections 2 and 3 justifies the following assertion.

The mechanical system (2.3) is observable in the quantity

$$
\xi=\sum_{i=1}^{n} c_{2 i} x_{2 i}
$$

then and only then when it is controlled by a force directed in the space $\left\{x_{1}\right\}(t=1, \ldots, n)$ along the vector C. The system is observable in velocity

$$
\xi^{\prime}=\sum_{i=1}^{n} c_{2 i-1} x_{2 i-1}
$$

then and only then when it is controlled by a force directed in the space $\left\{x_{1}\right\}$ along the vector C, and when all $\lambda_{1} \neq 0$.

The letters $\zeta_{1}(\ell=1, \ldots, n)$ will be used for notation.
Let $\zeta_{1}(\imath=1, \ldots, n)$ be curvilinear coordinates in which the kinetic energy is expressed as a sum of squares. Then, the above assertion is formulated as follows.

The mechanical system 13 observable on a coordinate $\xi=\sigma_{1}$ then and only then when it is controllable by a force along this coordinate. The system 1 s observable along the velocity $\xi^{\prime}=\sigma_{1}^{\prime}$ then and only then when it is controlled by a force along the coordinate $\zeta_{\text {: }}$ and all $\lambda_{1} \neq 0$. This represents the concrete expression of the dualty principle between control and observation [6 and 13] for the considered mechanical systems.
4. Solution of problems 1.1 and 1.2 with incomplate information. Let us suppose that it is impossible to measure $x_{21}\left(t=1, \ldots, z_{n}\right)$ at each instant of time but that it is possible to measure only certain functions of them $w_{1}=\varphi_{1}\left(x_{1}, \ldots, x_{2 \mathrm{a}}\right)$ which are not solvable uniquely with respect to x_{1} and which satisfy the condition $\varphi_{1}(0, \ldots, 0)=0$. It is required to find a control satisfying the conditions of problems 1.1 and 1.2 .

Following [9], we seek the control of the form

$$
\begin{equation*}
\frac{d u}{d t}=U\left[w_{1}(t+\vartheta), \ldots, w_{l}(t+\vartheta), u(t+\vartheta)\right] \tag{4.1}
\end{equation*}
$$

where U is the functional defined on the continuous functions $w_{i}(\mathcal{\vartheta}), u(\vartheta)$ $(-\tau \leqslant \vartheta \leqslant 0, \tau=\mathrm{const}>0, i=1, \ldots, l)$. The solution of the linear problem, corresponding to problem 1.1, exists under the conditions indicated in [9] and be determined by the equality (4.1) of [9]. These conditions coincide with conditions (2.11) in the present case if the observation is carried out along the coordinate, or with conditions (2.11) and (3.3), if the velocity is observed. The solvability of problem 1.2 follows from the solvability of problem 1.1 in the linear approximation. Also, the solvability of problems 1.1 and 1.2 in the linear approximation indicates the solvabllity of the corresponding nonlinear problems [9].

Theorem 4.2. Let the system (1.2) be observed along the coordinate

$$
w_{i}=c_{i_{1}} x_{1}+\ldots+c_{i_{n}} x_{n}+\mu_{i}\left(x, x^{\prime}\right)
$$

where μ_{1} and $\mu_{1}{ }^{*}$ are terms of higher order of smallness. If condition (2.11) is fulfilled, then the motion $s_{1}=\ldots=s_{n}=0$ can be stabilized by
the control

$$
\begin{equation*}
\frac{d u}{d t}=U[w(t+\vartheta), u(t+\vartheta)] \tag{4,2}
\end{equation*}
$$

Let the system (1.2) be observed in velocity

$$
w_{i}=c_{i_{1}} x_{1}^{\prime}+\ldots+c_{i_{n}} x_{n}^{\prime}+\mu_{i}^{*}\left(x, x^{\prime}\right)
$$

If the conditions (2.11) and (3.3) are fulfilled, then the motion $s_{1}^{\prime}=\ldots s_{n}^{\prime}=0$ can be stabilized by the control (4.2).
5. Example. Let us auppose that there are n rods of lengths $1_{1}, \ldots, l_{n}$ connected by hinges (see Fig.1). At the rod attachmentipoints and at the free end, there are point masses $m_{1}, \ldots, m_{\mathrm{n}}$. The rod masses are neglected. We will assume that the system is in the vertical plane. The initial deviations from the vertical and the velocities of the points of the system are regarciti as small quantities.

Let the force be appiied to the k th point having a horizontal direction and lying in the given vertical plane. Let us determine the possibility of stabilization in the sense of problem 1.1 and observation in the sense of problem 3.1.

Let us choose as independent coordinates the deviations x_{1} of the points m_{1} from the vertical (Fig.l). In the first approximation we have

$$
\begin{equation*}
2 T-\sum_{i=i}^{n} m_{i} x_{i}^{\prime 2}, \quad 2 V=-\mathrm{g} \sum_{i=1}^{n^{\prime}} m_{i} \sum_{k=1}^{i} \frac{1}{l_{k}}\left(x_{k}-x_{k-1}\right)^{2} \tag{5.1}
\end{equation*}
$$

Here T and V are the kinetic and the potential energies. The equations of motion are of the form

Fig. 1

$$
\begin{align*}
& x_{1}^{\prime \prime}=\alpha_{1} x_{1}-\beta_{1} x_{2} \\
& x_{2}^{\prime \prime}=-\gamma_{1} x_{1}+\alpha_{2} x_{2}-\beta_{2} x_{3} \tag{5.2}\\
& \cdot \\
& x_{n}^{\prime \prime}=-\Upsilon_{n-1} x_{n-1}+x_{n} x_{n}
\end{align*}
$$

Equations (2.5) are, in this case, of the form

$$
\left|\begin{array}{cccccl}
\alpha_{1}-\lambda & -\beta_{1} & 0 & \cdots & 0 & 0 \tag{5.4}\\
-\tau_{1} & \alpha_{2}-\lambda & -\beta_{2} & \cdots & 0 & 0 \\
\cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\
0 & -\gamma_{2} & \alpha_{3}-\lambda & \cdots & 0 & 0 \\
0 & 0 & 0 & \cdots & \alpha_{n-1}-\lambda & -\beta_{n-1} \\
0 & 0 & 0 & \cdots & -\gamma_{n-1} & \alpha_{n}-\lambda
\end{array}\right|=0
$$

It follows from (5.3) that $\beta_{1} \gamma_{1}>0$. Consequently, [14] (p.82) the roots of Equation (5.4) are different and no coordinate of any eigenvector for the matrix considered can be zero; therefore, $\lambda_{1} \neq \lambda_{1}, \alpha_{k j} \neq 0, \lambda_{1} \neq 0$ ($k, \tau, f=1, \ldots, n ; i \neq f$) (V is negative definite).

This means that the system considered is controllable along any coordinate x_{i} and is observable along any coordinate x_{i} and the velocity x_{1}^{\prime}.

Consequently, the following conclusions are valid.

1. The system (Fig.1) can be stabilized by the force

$$
u\left(x_{1}, \ldots, x_{n}, x_{1}^{\prime}, \ldots, x_{u}^{\prime}\right)
$$

2. The system (Fig.1) can be observed along the coordinate

$$
w=x_{i}+\mu_{i}\left(x_{1}, \ldots, x_{n}\right)
$$

or this system can be observed along velocity

$$
w=x_{i}^{\prime}+\mu_{i}^{*}\left(x_{1}^{\prime}, \ldots, x_{n}{ }^{\prime}\right)
$$

and stabilized by the controi (4.2)
3. The system (Fig.1) in the linear approximation can be reduced to the state $x_{1}=0$ in the finite time T by application of a sequence of impulses of the force u.
$N \circ t e$. The considered rud system is a Sturm system [14]. The above derived conclusions are applicable to Sturm systems in general.

The author is indebted to N.N. Krasovskil for valuable advice.

BIBLIOGRAPHY

1. Liapunov, A.M., Obshchaia zadacha ob ustoichivosti dvizhenila (General Problem of the Stability of Motion). Gostekhizdat, 1950.
2. Chetaev, N.G., Ustoichivost' dvizheniia (Stability of Motion). Gostekhizdat, 1955.
3. Kurtsveil', Ia., K analiticheskomu konstruirovaniiu reguliatorov (On the analytical design of control systems). Avtomatika 1 telemekhanika, Vol.22, № 6, 1961.
4. K1rillova, F.M., K zadache ob analiticheskom konstruirovanif reguliatorov. (On the problem of analytical design of control systems). PNM Vol. 25, № 3, 1961.
5. Kalman, R.E., Ob obsizchei teoril sistem upravlenila (on the general. theory of control systems). Proceedings of the lst Congress of IFAK, Izd.Akad.Nauk: SSSR, Vol.1, 1961.
6. Krasovskil, N.N., K probleme sushchestvovaniia optimal'nykh traektorii (On the problem of the existence of optimum trajectories). Izv.vyssh. uchebn. zaved. MVO SSSR, № 6 (13), 1959.
7. Krasovskil, N.N., K teoril optimal'nogo regulirovanila (on the theory of optimum contro1). PMN Vol.22, № 4, 1959.
8. Gal'perin, E.A. and Krasovskil, N.N., O stabilizatsii ustarovivshikhsia dvizhenil nelineinykh upravliaemykh sistem (On the stabilization of steady state motions of nonlinear control systems). PMM Vol.27, No 6, 1963.
9. Krasovski1, N.N., 0 stabilizatsii neustaichivykh dvizhenii dopolnitel'nymi silami pri nepolnoi obratnoi sviazi (On the stabilization of unstable motions by auxilliary forces in the presence of incomplete feedback). PMN Vol.27, № 4, 1963.
10. Al'brekht, E.G., Ob optimal'noi stabilizatsii nelineinykh sistem (on the optimum stabilization of nonlinear systems). PMM Vol.25, № 5, 1961.
11. Al'brekht, E.G., K teoril analiticheskogo konstruirovanila reguliatorov (On the Theory of Analytical Design of Control Systems). Tezisy dokladov mezhvuz.konf. po ustoichivosti dvizhenii 1 analiticheskoi mekhanike (Abstracts of Reports from a Conference on the Stability of Motion and Analytical Mechanics). Izd.kazansk.aviats.Inst., Kazan', 1962.
12. Letov, A.M., Analiticheskoe konstruirovanie reguliatorov (Analytical design of control systems). Avtomatika i telemekhanika, Vol.22, № 4, 1961 .
13. Kalman, R.E., New Methods and Results in Linear Prediction and Filtering Theory. RIAS Technical Report, No 1, 1961.
14. Gantmakher, F.R. and Krein, M.G., Ostsilliatsionnye matritsy 1adra 1 malye kolebanila mekhanicheskikh sistem (Oscillatory Matrices of a Kernel and Small Oscillations of Mechanical Systems). Gostekhizdat, 1950.
