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Consideration is given to the problem of control forces which stabilize an
unstable motion of & holonomic mechanlical system. Sufficient conditions for
controllability and stabilization along one of the coordinates are derived.
Conditions for observability of the system motion along one coordinate or
one velocity are determined., The problem of optimum stabilization in the
presence of incomplete feedback 1s considered.

1. PFormulation of the proeblem. Let us consider & mechanical system, the
states of which are described by the curvilinear coordinates g () {f > Oand
i=1,..., n). Let a control force 1y act on the system, where this force
is related to the curvilinear coordinates g4, and velocities dg,/dt by
Equations

d aT oT R

E{?a’—T—; — ”é‘&; == Qi (t’ ‘II% .. ey qn, u) (t: I, aeey n) (1.1)
where 7T 1is the klnetic energy of the system, ¢y 18 the generalized force
corresponding to the coordinate g, .

Let there be given a motion g,=g,°(#) which results from (1.1) for
u = ( and for certain initial conditions

gi° (0} = ¢;, = const, (dg° / dth—y = iy = const

Let us assume that the motion g, = g, () 4is unstable in the sense of
Liapunov [1]. The problem is to determine the force y whlch stabilizes
the motion g¢,°(¢). Let us construct the equations of disturbed motion [1]
(p.21) at the vicinity of ¢,°(t). Assuming that &,=¢,—¢,°(¢) , then
Equations. {1.1) will be of the form

d aT T
(-i? 03.’:’ - 6Si

=S; (t 810 - - -5 Sns w (i=1,..,7 {1.2)

which for y = () possess the solution s = 0. We will consider two prob-

lems.
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Stabilization of unstable motions of mechanical systems 605

Problen 1.1 . PFind the function
==l Sy ooy Sny 8y« -y Sn) (1.3)

such that the motion s,= 0 be asymptotically stable in the sense of Liapu-
nov on the strength of the equations of perturbed motion (1.2) and (1.3).

Problem 1.2. Find the function u such that the motion g, {¢t)=0
be asymptotically stable on the strength of the equations of perturbed motion

(1.2} and (1.3), and that at the same time the function
o0

I = S Glt,si (O, . oy sa(®)y s (..o s (Dou(d)ldt  (14)

0
be minimized along the motions 8,{s) and yu(¢) for the system (1.2) and
{1.3).

Here ¢ 1s a positive definitez analytlc function of g;, g,y u for
t > 0 , and the following condition is satisfied

2n
Gt Sty ooy Sny S ooy Si/y W)= E dijzizi+ du® v (¢t 2y, ..., Zon, W)
1,i=1
(23 = 81/, 21 = )
Here the condition
[Vt 2y o ooy Zon, W] <C B (32 oo+ 2 U
€>0, p=(s+ ... + 25+ u) " <8, >0, d>0)
is fulfilled uniformly.

The quantity
n

Z dijziz; + du?

i,j=1
1s a positive definite function.

2. The problem of stabilization. Let us assume that the linear approxi-
mation to the system is stationary and Bquations (1.2) are of the form

. . @
Days = N bys;+bu+ oyt s s, u) (=1,...,0E = a;ss;)
=1

=1 i,d==1

where 4,,, by , b, are constants, and S 1s a positive definite form,
byy= by . It 1s assumed that condition (2 2)

'ri (tv sh ooy s'n? 31!1 * vy Snr, u)!< 8p2 (3>0; P<6, 6>0, i=1,'.'..,n)

is fulfilled uniformly.
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Without loss of generality, we may assume that »,# 0, b= 0 {£ =2,...,n).

If p,=0 and 3,# 0 for ¢ # x then it will be said that the system is
subject to a force along the xth coordinate,

The linear approximation for Equation (1.2) will be of the form
n n n w
1
D ans” = Nbusi +u,  Xaps’ = Qb (=2, .., ny (2.3)
ja=1 {=1 dre=y femy

With the aid of a nonsingular linear transformation [2] (p.97)
si=Pay + ... + Biniyn
the system will be reduced to normal coordinates
¥ = Ay ool i=1,...,n (2.4)

Here y, are the normal coordinates and the real numbers )\, are the roots
of Equation

|ah — by| = 0 (2.5)
The numbers g, satisfy Equations
un
2 (ohi — b =0 (i =1,0m) (2.6)
kel

The system (2.4) 1s replaced by the system
Tpiy = hiZy -F ol Ty’ = Tyig 2.9
{xﬁ_l p— yif: Loy = ¥ i=1,...,n}

Let us formulate the conditions for sclvability of problem 1.1 . A suf-
ficient condition for solvability of problem 1.1 is the following [3 and 4],
The system of vectors

A,BA, ..., B4 (2.8)
must be linearly independent, where
a1 OM...00
0 10...00
A= B=1H. ...
g 00 .. .04, (2.9)
1n 00 .. .10
0

It follows From the requirement of linear independence of vectors (2.8)
that

a0 W 0
G <311 PR g C!en?&’;'l
. . . . . )
A=ly 0 ... agart o |F0 (2.10)
1
t a, - 0 ST S
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We have
A=a .. am My —A). .. (An — Moo (A — Apy)?
Consequently, condition (2,10) can be expressed as
1. A=Ay, 2. o0 Gi=1,...,n i) (2.11)

Conditions (2.11) are the conditions for controllability [5] of the
linear system (2.7), 1.e. when (2,11) 1s fulfilled for any T > 0 and any
initial point x°, there exists [5 and 6] a control u () (0 <t < 7),
which translates the system (2.7) from the point x = x° to the point x=0
in time 7T . Furthermore, with conditions (2,11), we can indicate such a
neighborhood of the point x = O where there also 1s a control ul¢) for
the nonlinear system (1.2) for each point x° from this neighborhood, which
will transfer the system (1.2) into the state x = O for finite time 7T .
According to [7], conditions (2.11) allow the system (2.7) to be transferred
from any point x° into a point x = O 1in time T also by the impulse con-

trol
.u:nlé(t__tl)_*—"'+nk6(t__tk)
Here ¢, are instants when the function

o) =|IF*(t)al, a = {a;1, 0, ..., &, 0}

has a strict maximum, F(t) is the fundamental matrix of the system (2.7),
and 7 ={1,,..., 15,} 18 a solution of the prcblem min,malelF"(t)al for
(%51) =—1 . It can be verified that under the conditions (2.11) and A, #0,
the function ¢(t) for any choice of 1 can have only isolated maximums.
Thus, under conditions (2.11) and 1,# O we can construct a sequence of
force impulses directed along the first coordinate such that the system
(2.7) will be transferred by these impulses from point x° into the point

x = 0,

Let conditions (2.11) be fulfilled, then we can find the function
U= pizy+ ..t Py Tan (2.12)

such that the system (2.7), (2.12) will be asymptotically stable. Con-
sequently, according to a Liapunov theorem [1] (p.127), the system (1.2),
(1.3) will also be asymptotically stable.

Let conditions (2.11) not be fulfilled. We will consider two cases.

Case 1. Let
Ki:#Xj, a11k=0 (k:1'vp), p<n, GU':#O, ‘]‘=#Lk

Then, 1f among the numbers xt there 1s at least one positive number,
the system (2.7) will have vositive numbers among the roots of 1ts character-
istic equation for any choice of u (2.12). Consequently, according to a theo-

rem by Liapunov, the system (2.7) 1s unstable for any cholce of uy (2.12).
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if, on the other hand, all numbers i, are negative, then {2.7) can be

i
considered as two independent systems sfkthe type
’ ’
xzik_l = kayk, fbgik = l'gik_l (k =1,... ’ P) (2.13)
xzik_i = }&1332} + alju:, Zgj = .'ngul (I:f‘:l}\) (214)

For the system {2.1%) conditions (2,11} are fulfilled, and therefore, we
can choose , .
U = plxl “‘}— R '}‘ pznx2n (’ :?E lk) (2,15)

such that the system (2.1%), (2.15) be asymptotically stable, For such a
cholce of u the system of first approximation (2.7), (2.12} 1is stable and
there are imaginary values among 1its characteristic numbers. The s%ability
of the complete system is then determined by the terms of higher ovder of
smallness (1] {p.137) [8].

1f all xi € 0 and 1f at least one X, = 0, then again a critical case
arises; the gtability of the complete systém is again determined by the
same terms.

Case 2 . Let

M=h = =M= A o= 0 (2.16)
for at least one f = %,..., kK + p . Without loss of generality we will
assume WA ===l =h oy 0 (2.17)

Let us transform the coordinates
p-HL
Zi== D\ Yy B =Y, (G=1....p+L i=p+2,...,n) (2.18)
k=1

and requlire that

p+1 Pl
Z Cinllyp == 0 (i=1,..., p), 2 Lot Pk +* 0 (219)
=1 s

The system {2.%) 1s reduced to the form

pH1
2 = Az (i=1,...,p), z’)'m == AZpe + E Cpmnoyrtt  (2.20)
k=1
7" = Mz + aun (i=p--2,...,0)

It follows from (2.20) that if A > O , the linear approximation {2.7},
{2.12) 1s unstable, consequently [1] (p.128), the complete system 1s also

unstable.

1f A < 0, then the stability of the system is determined by the terms of
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higher order of smallness.

It is knmown that problem 1.2 1s solvable if problem 1.1 is solvable in
the linear approximaticn [9].

Thus, the following assertion is valid.

Theorem 2.1 . If conditions {2.11) are fulfilled, then problems
1.1 and 1.2 are solvable. If conditions (2.11) are not fulfilled and
1) au, =0 (k =1,...,p) and at least one of the numbers Aj, > 0,
then problems 1.1 and 1.2 are not solvable for Ay <{ O, but A; == Aj, i 5= i,
] = iy ylelds a critical case, i.e. the posslblility of solvability of prob-
lem 1.1 depends on the terms of higher order of smallness.

2) 1f Ay =Ry = ... = Ay = A, but a;p,; 5= U, then problems 1.1
and 1.2 do not possess a solution for A,> ) and are reduced to critical

cases if A L0, Ais=Aj, a;i==0 for i > p + 1.

Let us consider now the linear approximation to problem 1.2 . If it is
assumed [10 and 11] that the functional (1.4) in the first approximation
becomes

I, “050[ 2 duzizy -+ du?]dt (2.21)
o i,k=1

then by minimizing it we obtain [12] the equations for y (2.12) and the
Liapunov function ¥ which ensures the asymptotic stablility of the system
(2.7), (2.12) in the form

n M

Z [aV (I)(M-Tzk + oyld) -+ % () 1’21.--1] + E dyrixy+—dut=0  (2.22)

= 9% Oz i, k=1
n
u t ¢ ov o
= =37 2. 1
2d ot 9y, o

The ¥ function can be sought as a quadratic form, and the coefficlents
determined by equating to zero the coefficients of terms in (2.22).

The obtalned algebraic equations have a solution then and only then when
there exlsts a control & = py&; &+ ... + P,u¥an, satlsfying the conditions
of the problem 1.1 in the linear approximation. This indicates a way for
computing the control.

3. The problem of observation in the linear approximation.
Problem 3.1. Finda 2o xn matrix ¥V (3) such that (3.1)
‘ £ (0) = @) s
S V(ﬁ-)ﬂu(ﬁ)”d\‘)z BN §(ﬁ)=2cixi(ﬁ) (—T1<<E<0)

- i=1

t— T (1)

where z; () will be solutions of the system (2.7) and u(#) s determined
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by {(2.12).

It is known that the solution of problem 3.1 1s glven by Lemma 4.2 [9]
under the conditions which in the stationary case assume the followling form

[5, 9 and 13]. The system (2.7) is observable then and only then when the
vector system

C, B*C, ..., B¥*C (3.2)
is linearly independent. Here
}0 1 .. 0 0
gxl 0 0 0
€= (Cl’ ey C‘;ﬂ)1 B* = o o0 ... ¢ 1
0 0 /8

Let us consider the case U=(c¢y, 0,¢30, ..., €ynyg, 0), which corresponds
to the observation of the system along a certain veloci%y, and the case when
¢ = (O,G,,‘..,O,can) which corresponds to observation along & certain curvi-
linear coordinate.

The conditions of observability in the first case will be
G-y 5= 0, A=k Ay Gri=1...,n0), A=0
and in the second
eo1 = 0, A == A (yfe=1y..0, ik )) (3.4)

When conditions (3.3) or (3.4) are fulfilled, the matrix V () is deter-
mined from Formula {4.20) of [9] or in other possible forms indicated in the
paper clted.

(3.3)

Note, in particular, that under conditions (3.3} and (3.4) the first
column of the V () matrix can be chosen ([9], Equation (4.30)) in tne form
of a linear comblnation of &-functions

Vig (8) = 2 it 8 (8 — 1)

Ky

for a finite number of Instants 1.} .

This means that at a given time the state zy(f), . . ., Zon{f) of the system
dryioy/ dt = Ay, diy/ dt = xyi; under the conditions (3.3) or (3.4) can
be restored by measurements of the quantity £ (f -+ U) at discrete instants
of time Iy} = f — T, The reasoning of Sections 2 and 3 Justifies the fol-
lowing assertion.

The mechanical system (2.3) 1s observable in the quantity

n.
E= D) cuty

i=1
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then and only then when it 1s controlled by a force directed in the space
{x,} (¢ =1,..., n) along the vector ¢ . The system 1is observable in velo-
city

n

r

= 2 Cai-1Tgi-1
{am]

then and only then when it 1s controlled by a force directed in the space
{x,} along the vector ( , and when all \,# 0 .

The letters ¢,(f = 1,..., n) will be used for notation.

Let ¢,(¢ = 1,..., n) be curvilinear coordinates in which the kinetlc
energy 1s expressed as a sum of squares. Then, the above assertion 1s for-
mulated as follows.

The mechanical system 13 observable on a coordinate £ = {, then and only
then when it 1s controllable by a force along this coordinate, The system 13
observable along the velocity ¢£’= (,” then and only then when 1t is control-
led by a force along the coordinate ¢, and all 1\, # 0 . This represents
the concrete expression of the dualty principle between control and observa-
tion [6 and 13] for the considered mechanical systems.

4, Bolution of problems 1.1 and 1.2 with incomplete information. Let us
suppose that 1t is impossible to measure x,,(t =1,..., 2n) at each instant
of time but that it is possible to measure only certain functions of them
wy= @ {x,,..., %3,) which are not solvable uniquely with respect to x, and
which satisfy the condition @,(0,..., 0) = 0. It is required to find a
control satisfying the conditions of problems 1.1 and 1.2 .

Following [9], we seek the control of the form
L Ul (¢ +9), ..o (4 9), u(t + 9] (4.1)

where U 1s the functional defined on the continuous functions w; (%), u (9)
(— <0, v=const >0, i =1,...,1). The solution of the linear
problem, corresponding to problem 1.1, exists under the conditlons indicated
in [9] and be determined by the equality {(4.1) of [9). These conditions
coincide with conditions (2.11) in the present case 1f the observation 1is
carried out along the coordinate, or with conditions (2.11) and (3.3), if
the velocity is observed., The solvability of problem 1.2 follows from the
solvability of problem 1.1 in the linear approximation. Also, the solvabi-
1ity of problems 1.1 and 1.2 in the linear approximation indicates the solva-
bility of the corresponding nonlinear problems [9].

Theorem 4.2 . Let the system (1.2) be observed along the coordi-
nate ’
w; = cyxy + ...+ cmZa T B (2, T)
where u, and u,* are terms of higher order of smallness. if condition
(2.11) is fulfslled, then the motion g,= ... = 8,= O can be stabilized by
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the control

=Ulw(+9),u+ 9l (4.2)
Let the system (1.2) be observed in veloclty
w; = cuxl' ‘{" e "|L Cinxn’ + l"‘i* (I, 1")

If the conditions (2.11) and (3.3) are fulfilled, then the motion
8, /= ...8’=0 can be stabilized by the control (4.2).

Arn Qs A. 1,..*._4-\.
5, Exanm p 1l e . Let us sy ppose that there are rods of lengtr
.

-3
1,,.+., 1, connected by hinges (see Fig.l). At the rod attachment: points
and at the free end, there are point masses seess M, . The rod masses are
neglected. We will assume that the system 1s in the vertical plane. The
initial deviations from the vertical and the velocitlies of the points of the
system are regardceZ 2s small guantities,

Let the force be applied to the kth point having a horizontal direction
and lying 1n the given vertlcal plane, Let us determine the possibility of
stabillzation in the sense of problem 1.1 and observation in the sense of
problem 3.1.

Let us choose as Indenendent coordinates the deviations x, of the points
m, from the vertical (Fig.l). In the first approximation we have

n
2T = 2 mgr;?, 2V = ——gz m; 2‘, (r,‘ — zp_)? 5.1)
i=i k=1
Here T and V are the kinetic and the potential energies. The equa-
tions of motion are of the form

:5’” m” 2"y = ayry — Byiy
l” Ty = — 117y - 0xy — Pary (.2)
| n x,” = — T, % n—i '{ Antn
where
ki3 g n
g 1 ————
I m, o == ’—”ili Z My i ”’ilH—l 2 my,
19 2 W -
n p n
.8 &
e i mill+1 2 Mg Tioy = myl; ?—l my
Fig.l k=i+1 k=x1

Equations (2.5) are, in this case, of the form

oy — A —B, 0 ... 0 0
—1y oy —A  —B, .0 0
I Il I _,
0 —1a a5 —% ... O 0 =0 (5-4)
0 0 0 cee g —h =By
| 0 0 0 cee —Tag o, —A

1t follows -from (5.3) that B,y, > O . Consequently, [14] (p.82) the
roots of Equation (5. 4? are different and no coordinate of any elgenvector
for the matrix consldered can be zero; therefore, \# A,, ay # O, A1 # O
(k, ), 4 =2,.0., n; 1 # ) (v 18 negative definite)

This means that the system consldered 1s controllable along any coordi-
nate x, and 1s observable along any coordinate x, and the velocity wx,'.
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Consequently, the following conclusions are valid.
1. The system (Fig.l) can be stabilized by the force

U@y ooy Ty Ty v e oy 2)
2. The system (Fig.1l) can be observed along the coordinate

w=a; 4+ W ey, ..oy
or this system can be observed along veloclty
w = xi, + p’i* (xllr et J""nl)

and stabilized by the control (4.2)

3. The system (Fig.l) in the linear approximation can be reduced to
the state x,= 0 1n the finite time I hy appllication of a sequence of
impulses of the force u .

N ot e . The considered rud system is & Sturm system [14]. The above
derived concluslons are applicable to Sturm systems in general,

The author 1s indebted to N.N. Krasovskili for valuable advice.

BIBLIOGRAPHY

1. Liapunov, A.M., Obshchala zadacha ob ustoichivostl dvizhenlia (General
Problem of the Stabllity of Motion). Gostekhizdat, 1950.

2. Chetaev, N.G., Ustoilchivost' dvizhenila (Stability of Motion).
Gostekhizdat, 1955.

3. Kurtsveil', Ia., K analiticheskomu konstruirovaniiu reguliatorov (On
the:analytical design of control systems). Avtomatika 1 telemekha-
nika, Vol.22, N 6, 1961.

4, Kirillova, F.M., K zadache ob analiticheskom konstruirovanii regulia-
torov {On the problem of analytical design of control systems%
PuM Vol.25, N 3, 1961.

5. Kalman, R.E,, Ob obshchel teorii sistem upravleniia (On the general
theory of control systems). Proceedings of the 1st Congress of IFAK,
Izd.Akad.Nauk:SSSR, Vol.l, 1961.

6. Krasovskii, N.N., K probleme sushchestvovanila optimal'nykh traektorii
(On the problem of the exlstenece of optimum trajectoriles). Izv.vyssh.
uchebn.zaved. MVO SSSR, N 6 (13), 1959.

7. Krasovskii, N.N., K teorii optimal'nogo regulirovaniia {On the theory
of optimum control). PuMy Vol.22, M 4, 1959.

8. Gal'perin, E.A. and Krasovskii, N.N., O stabilizatsii ustanovivshikhsia
dvizhenili nelineinykh upravliaemykh sistem {On the stabilization of
stgady state motions of nonlinear control systems). Ay¥ Vol.27, N6,
1963.

9,. Krasovskii, N.N., O stabllizatslil neustoichivykh dvizhenii dopolnitel'-
nymi silaml pri nepolnol obratnol sviazl (On the stabilization of
unstable motions by auxilllary forces 1n the presence of incomplete
feedback)., PuM Vol.27, N 4, 1963.

10. Al'brekht, E.G., Ob optimal'noi stabilizatsii nelineinykh sistem (On the
optimum stabilization of nonlinear systems). PMy Vol.25, N 5, 1961,

11. Al'brekht, E.G., K.teorli analiticheskogo konstrulrovaniia regullatorov
(On the Theory of Analytical Design of Control Systems). Tezisy dok-
ladov mezhvuz.konf. po ustoichlvostl dvizhenil i analiticheskol mekha-
nike (Abstracts of Reports from a Conference on the Stability of
Mogion and Analytical Mechanics). Izd.kazansk.aviats.Inst., Kazan',
1962.

.



614

12a.

13.

14,

M.S. Gabriellan

Letov, A.M., Analiticheskoe konstruirdvanie reguliatorov (Analytical
deﬁign gf control systems). Avtomatika i telemekhaniks, Vol.22,
Ne 4, 1961.

Kalman, R.E., New Methods and Results in Linear Prediction and Filter-
ing Theory. RIAS Technical Report, M 1, 1961.

Gantmakher, F.R. and Krein, M.G., Ostsilliatsionnye matritsy iladra 1
malye kolebanila mekhanicheskikh sistem (Oscillatory Matrices of a
Kernel and Small Oscillations of Mechanical Systems¥. Gostekhizdat,
1950,

Translated by V.C.



