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ConsideratXon is given to the problem of control. forces which stabilize an 
unstable motion of a holonomic mechanical System. Sufficient conditions for 
controLlabilIty and stabfiization along one of the coordinates are derived. 
Conditions for observability of the System motion along one coordinate or 
one velocity are determined. The problem of optimum stabilization in the 
presence of Incomplete feedback Is considered. 

1. Bomnul&t%on at the problame Let us consider a mechanical System, the 

states of uhich are described by the curvfline~ coordinates9 (t) ft > Qand 

i = I, . . .( n). Let a control force u act on the System, where this force 

is related to the curvil.inear cool*dlnates qi and velocities @,/at by 

Equations 
d &" aT -- . . . ..“..--zzc 

dt aqi’ a& Qi (4 41, e * *7 Qm 4 (i = f, . . . . 11) O-1) 

where T is the kfnetic energy of the system, & Is the generalized force 

corresponding to the coordinate qI . 

Let there be given a motion g,= n,"(t) which results from (1.1) for 

u - 0 and for certain initial conditions 

QiO (01 = qi* = FOZK&, (&&" / &)txo =II= & = cortst 

Let us assume t;Mt the motion g1 = g,"(t) is unstable In the Sense of 

Llapunov Cl]. The problem Is to determine the force u which stabilizes 

the motion q,"(t). Let us construct the equations Of disturbed motion [I] 

(p.21) at the vicinity of n%"(t). Assuming that Si= P,--Q,'(C) , then 

Rquatlorua (1-l) will be of the form 

d xr m 
----T-- dt asi asi = St (t, $1, . . ., Sa, u) (i = I, -.-, ,i) 0.23 

which for u s 0 possess the Solution si = 0. We will consider two prob- 

lems, 
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P r o b 1 e m 1.1 . Find the function 

24 = u (t, Sl, . * ., s,, s,‘, . . *, s,‘) (f-3) 

such that the motion e,= 0 be asymptotically stable in the sense of Liapu- 

nov on the strength of the equations of perturbed motion (1.2) and (1.3). 

Problem 1.2. Find the function u such that the motion s%(t)=0 

be asymptotically stable on the strength of the equations of perturbed motion 

(112) and (1.3), and that at the same time the function 

I = TG It, 31 (t), . . ., %I (0, $’ (% * . a1 s,’ (& u (t)Idt (1.4) 
0 

be minimized along the motions s%(t) and u(t) for the system (1.2) and 

(1.31. 

Here 0 Is a positive definlta analytic function of s,, e,‘, u for 

t>o, and the following condition is satisfied 

2n 

G 6 ~1, . 
-I 

* ', sn, Sl , * - *, &a', U) = 2 dijzizjf du2 + Y (t, ~1, s s *f Zgnr U) 
i,j=l 

(zfi_l = slt zf& = si) 

Here the condition 

/ v (t, 3, . * ., Z2n, u) I< f3 (Q -I- * . . + zzm2 + u2P+= 

(c>O, p=(zl”+.*.+z~+u~)“~<8, s>o, d>O) 

is fulfilled uniformly. 

The quantity 

5 dij&Zj + dU2 
i,j=l 

is a positive definite function. 

2. 72~ problaa OS rtabiliratfon. Let us assume that the linear approxi- 

mation to the system is stationary and Equations (1.2) are of the form 

n 

2 %jSj" =I 2 &jSj + bjU + rj (I!, S, S’, U) (i = 1, . . ., ?I) (S = 2 UijSiSj) 

j==r j=l i,j=l 

where a,,, 21,~ , b, are constants, and S Is a positive deflnlte form, 

b*, = b,i * It is assumed that condition 
(2.2) 

Is fulf'illed uniformly. 



606 KS. uubrrcllm 

Without loss of generality, we may assume that a,# 0, &= 0 (t -22t...ts). 

If bt= 0 a83 a,# 0 for t # ts then it will be said that the SFStem is 

subject to a force along the kth coordinate. 

The linear approximation for Equation (1.2) will be of the form 

ff = 2, . . . . nf (2.3) 

With the aid 

the system will 

Here vi are 

of Equation 

The numbers 

i=i i=1 i=1 

of a nonsingular linear transformation C23 (p$W) 

% = Bilyx + * * * + flinjjn 

be reduced to normal coordinates 

the normal coordinates and the real numbers k, ape the roots 

Iaijh - bijl = 0 

satisfy Equations 
n 

(2.5) 

(i,j = I,...,n) (2.6) 

The system (2.4) is replaced by the system 

Let us formulate the conditions for solvability of problem 1.1 . A suf- 
ficient condition for solvability of problem 1.1 is the following [3 and 41. 

The system of vectors 

must be linearly independent, where 

a11 'Okt. ..oo 

0 10...00 
A= e.. B= aitl-;bk 

3 t 1s 1 
(2.9) 

0 
00 . . .2 o'i 

It follows from the requirement of linear independence of vectors (2.8) 
that 

A= =ko {%iO) 
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We have 

A = all” . . . al,,” (A, - Q2 . . . (A, - AJ2 . . . (A, - h,p$ 

Consequently, condition (2.10) can be expressed as 

1. hi # hj, 2. ali + 0 (i,j=l,...,n; i#j) (2.11) 

Conditions (2.11) are the conditions for controllability [51 of the 

linear system (2.71, i.e. when (2.11) is fulfilled for any T > 0 and any 
Initial point Xb, there exists C5 and 61 a control u (t) (0 < t < T), 
which translates the system (2.7) from the point x = fi to the point xX C 

in time T . Furthermore, with conditions (2.11), we can Indicate such a 

neighborhood of the point r * C where there also Is a control u(t) for 

the nonlinear system (1.2) for each point A? from this neighborhood, which 

will transfer the system (1.2) Into the state x = C for finite time T . 

According to [73, conditions (2.1.1) allow the system (2.7) to be transferred 

from any point xb Into a point x = 0 In time T also by the lmpulsz con- 

trol 

here tJ are Instants when the function 

cp (t) = I w-l (t) a I, a = {all, 0, . . ., ch, 01 

has a strict maximum, F(t) Is the fundamental matrix of the system (2.7), 

and 1 - (ll,..., 

(X,1) I-1 . 

l,.) Is a solution of the problem mln,max,)IF-l(t)ol for 

It can be verified that under the conditions (2.11) and X,#C, 
the function cp(t) for any choice of 1 can have only Isolated maxlmums. 

Thus, under, conditions (2.11) and A,# C we can construct a sequence of 

force Impulses directed along the first coordinate such that the system 

(2.7) will be transferred by these Impulses from point Jco Into the point 

x= 0. 

Let conditions (2.11) be fulfilled, then we can find the function 

u = PlX, + * * * -!- P,,X2c,, (2.12) 
such that the system (2.7), (2.12) will be asymptotically stable. Con- 

sequently, according to a Llapunov theorem Cl] (p.l27), the system (1.2), 

(1.3) will also be asymptotically stable. 

Let conditions (2.11) not be fulfilled. We Will consider two cases. 

Case 1. Let 

hi # hj, aIik = 0 (k = 1.. . ., PI, P < n, a,j + 0, -j# ik 

fhen, If among the numbers At there Is at least one posltlve number, 

the system (2.7) ~113. have nositl:e numbers among the roots of Its character- 

istic equation forgrcholce of u (2.12). Consequently, according to a theo- 

rem by Llapunov, the system (2.7) Is unstable for any choice of u (2.12). 
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If,on the other hand, all numbers x 
ti, 

are negative, then (2.7) can be 
considered as two independent systems of the type 

&ih.-, E XikXsik7 

, 

??ik - x2ik-1 (k=i,._.,p) (Z.13) 

X2$@ = k2j + alp, X2j = Xpj_1 (i # ‘J (a. 44) 

_%r the system (2.14] conditions (2,11f are i’ulfiffed, and therefore, we 

can choose 
U = p1s, + * * " --I- PznXzn ti # id (2.15) 

such that the system (2.14), (2.15) be asymptotically stable. For such a 
choice of u the system of first approximation (2.7), (2.12) is stable and 

thefe are imaginary values among its characteristic numbers. The s%ability 
of the complete system Is then determined by the terms of higher o?der of 

smallness Cl] (p. 137) C8.l. 

If all At < 0 and if at least one X = 0 ) then again a critical case 

arises; the *stability of the complete s&m is again determined by the 

same terms. 

Case 2. Let 

hk “- kk+l = . . . == hk+p = h, w # 0 (2.16) 

foratleastone j-k,..., k+p. Without loss of generality we will 

assume that 
h, = h, = . . . = hPIL = 3% 

Let us transform the coordinates 

and require that 

f t n) (2.18) 

f2.17) 

(2.19) 
k=l k-1 

The sjr~telli (2.4) Is reduced to the form 

Pi;1 

Z{ = A$ (i = 1,. ’ * , PI, z;l+l - .&q + YJ Cp+~~c%&4 (2.20) 
‘hk, 

zip = hi& f CC&*11 (I -- p .-I- 11, . . . I It) 

1% follcw3 fram (2.20) that if x > 0 f the linear &~~~o~irnat~on (2.7), 

(2.12) is unstable, consequently [I] (p.128), the complete system is also 

unstable. 

If h \< 0, then the stability of the system is determined by the terms of 



higher order of smallness. 

It is knoun that problem 1.2 Is solvable lo? problem 1.1 is solvable in 

the linear approximation [g]. 

Thus, the following assertion is valid. 

Theorem 2.1. If conditions (2.11) are fulfilled, then problems 

1.1 and 1.2 are solvable. If condl&ions (2.11) are not fulfilled and 

1) a,i, = 0 {k = 1, . . ., p) and at least one of the numbers hi, > 0, 

then problems 1.1 and 1.2 are not solvable for & < 0; but hi # hj, i # ikr 

j = ik yields a critical case, I.e. the possiblllty of solvability of prob- 

lem 1.1 depends on the terms of higher order of smallness. 

2) if h, -= h, = . . . = k*pi-l = h, but &lp+l # 0, then problems 1.1 

and 1.2 do not possess a solution for h> 0 and are reduced to critical 

cases if A < 0, hi + hj, U,i # 0 for i > p f 4. 

Let us consider now the linear approximation to problem 1.2 . If it is 

assumed [lo and 111 that the functional (1.4) In the first approximation 

becomes 

I, -= 3 [ ; &xix& -/- duq dt 
0 i, k=l 

(2.21) 

then by minimizing It we obtaln 1123 the equations for u (2.12; and the 

Llapunov function V which ensures the asymptotic stability of the system 

(2.7), (2.12) In the form 

(2.22) 

The y function can be sought as a quadratic form, and the coefficients 

determined by equating to zero the coefficients of terms in (2.22). 

The obtained algebraic equations have a solution then and only 

there exists a control u = plx, -/- . . . + p2,,x2,,, satisfying the 

of the problem 1.1 in the linear approximation. This indicates a 

computing the control. 

3. The problem of obrrrvrtlon in the linear approxkuation. 
P r o b 1 e m 3.1 . Find a 2n, X n. matrix v(8) such that 

then when 

conditions 

way for 

where xi (8) will be solutions of the system (2.7) and U(8) 1.s determined 
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by (2.12). 

It is known that the solution of problem 3.1 is given by Lemma 4.2 [g] 

under the conditions which in the stationary case assume the following form 

15, 9 and 133. The system (2.7) ia observable then and only then when the 
vector system 

c, PC, . . .) B*2n-1c (3.2) 

1s linearly independent. Here 

0 0 

/:, : ::: 0 0 
. . . 

c = (Cl, * . ., C&, D” = ; 0 : : * (j 1 

0 0 . . . h,, 0 

Let us consider the case C-(c,, 0, me, 0, . . ., c~~_..~, 0), which corresponda 

to the observation of the system along a certain velocity, and the case when 

C = (0,s a,...,O,~a,) which corresponds to observation along a certain curvl- 

linear coordinate. 

The conditions of observability in the first case will be 

%-I # 0, .hi # hj (i, i = 1, . * * , 4, hi j; 0 

and in the second 
(3.3) 

c2i =+ 0, Ai # hj (i,j‘-$,...,n; i+ji) (3*4) 

When conditions (3.3) or (3.4) are fulfilled, the matrix v(6) is deter- 

mined from Formula (4.20) of [g] or in other possible forms indicated in the 

paper cited. 

Note, in particular, that under conditions (3.3) and (3.4) the First 

column of the V (6) matrix can be chosen ([ 91, Equation (4.30)) in tne form 

of a linear ~omb~natlon of &-functions 

m 

Tic, (6) -= 2 ctki 8 (6 - q(i) 
k=i 

For a finite number of instants ?ti . 

This means that at a given tima the state sr(t), . . ., x&t) of the system 

dr.)c_l/ dt = hixli, dxzildt = xzi-1 under the conditions (3.3) or (3.4) can 
be restored by measurements of the quantity E (t + 6) at discrete instants 

of time tki = t - Tki. The reasoning of Sections 2 and 3 justifies the fol- 

lowIng assertion. 

The mechanltcal system (2.3) is observable in the quantity 

E .= fi %iX2r 

i=l 
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then and only then when it Is controlled by a force directed In the space 

(X,1 (t = I,..., n) along the vector C . The system Is observable In velo- 

city 

then and only then when it 1s controlled by a force directed In the space 

[x,) along the vector C , and when all A,#0 . 

The letters Cl (2 - l,.. ., n) will be used for notation. 

Let c,(t - l,..., n) be curvilinear coordinates In which the kinetic 

energy Is expressed as a sum of squares. Then, the above assertion Is for- 

mulated as follows. 

The mechanical system 1s observable on a coordinate 5 = C, then ar.d only 

then when It la controllable by a force along this coordinate. The system 13 

observable along the velocity <‘= C,’ then and only then when It 1s control- 

led by a force along the coordinate C, and all X, # 0 . This represents 

the concrete expression of the dualty principle between control and observa- 

tion C6 and 133 for the considered mechanical systems. 

4. Solution of problem 1.1 ud 1.1 with inoomplrto lnformtlon, Let us 

suppose that it is Impossible to measure x&,(t = l,..., &) at each Instant 

of time but that It Is possible to measure only certain functions of them 

Wi - ‘pl(S,,..., x3.) which are not solvable uniquely with respect to x, and 

which satisfy the condition (p,(O,,.,, 0) = 0 , It 1s required to find a 

control satisfying the conditions of problems 1.1 and 1.2 . 

Following [g], we seek the control of the form 

du 
- = u [wl (t t 6), . . ., Wl (t + q, @ (t + WI 
dt (4.1) 

where U Is the functional defined on the continuous functions wi (6), u (i+j 
(- T Q 6 < 0, r = const > 0, i = 1, . . ., 1). The solution of the linear 

problem, corresponding to problem 1.1, exists under the conditions Indicated 

in [g] and be determined by the equality (4.1) of [g]. These conditions 

coincide with conditions (2.11) In the present case if the observation 1s 

carried out along the coordinate, or with conditions (2.11) and (3.3), If 

the velocity Is observed. The solvability of problem 1.2 follows from the 

solvability of problem 1.1 In the linear approximation. Also, the solvabl- 

llty of problems 1.1 and 1.2 in the linear approximation Indicates the solva- 

bility of the corresponding nonlinear problems [g]. 

Theorem 4.1 . Let the system (1.2) be observed along the coordl- 

nate 
wi = ci151 + . . . + qnx, + pi (x9 x’) 

where cli and p,* are terms of higher order of smallness. if condition 

(2.11) Is fulfilled, then the motion s, = . . . = en= 0 can be stabilized by 
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the control 
‘dU 
- = u [w (t + ti), U (t + S)l 
dt 

Let the system (1.2) be observed In velocity 

U’i -= cilq ’ .I_ / . . . -~- ‘inZ,l’ + cli* (r, s’) 

If the conditions (2.11) and (3.3) are fulfilled, then the motion 
s ‘= I . . . S.’ = 0 can be stabilized by the control (4.2). 

(4.2) 

5. Example. Let us suppose that there are n rods of lengths 
I,,..., 1” connected by hinges (see Flg.1). At the rod attachmentpoints 
and at the free end, there are point masses m The rod masses 
neglected. We will assume that the system Is iA’&; ?&tical plane 

are 
The 

initial deviations from the vertical and the velocities of the points of the 
system are regardtd as small quantities. 

Let the force be applied to the kth point having a horizontal direction 
and lying In the given vertical plane. Let us determine the possibility of 
stabilization in the sense of problem 1.1 and observatlon In the sense of 
problem 3.1. 

Let us choose as lndeoendent coordinates the deviations X, of the points 
VI, from the vertical (Fig.1). In the first approximation we have 

2T-z i "liXiTf. (5.1) 

i=i 

Here T and V are the kinetic and the potential energies. The equa- 
tions of motion are of the form 

/l =- ty. x 
1 1 - B 1x2 

x2' = - ylxl _I- apxZ - &x3 (5.3) 

. . . . . . . . . . . . . . 
x u Z - !I Tn-l%-l -I- %“,I 

where 

Fig.1 

Equations (2.5) are, in this case, of the form 

al- h -pl 0 . . . 0 0 

-T: a2 --h --fis . . . 0 0 

. . . . . . . . . . . . . . . . . . . . . . . . . . 
(.5.4) 

0 a,--& . . . 0 0 
cz 0 

- yz 

0 0 0 . - . a,,_-1 --h - Bn-1 
io 0 0 . . . - T?,--1 a, - h 

It follows -from (5. 
roots of Equatloll (5.4 7 

) that B,yI > 0 . Consequently, [lb] (p.82) the 
are different and no coordinate of any elgenvector 

for the matrix considered can be zero; 
(k, t, J = I,..., n; 

therefore, AI# X,, Q, # 0, X, # 0 
t # J) (V is negative definite). 

This means that the system considered Is controllable along any coord+- 
nate X, and Is observable alQiIg any coordinate x, and the velocity X, . 
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Consequently, the following conclusions are valid. 

1. The system (Flg.1) can be stabilized by the force 

a (51, - - -, TnLI Xl’, - * -9 Xl“) 

2. The system (Fig.1) can be observed along the coordinate 

w = zi + /.$ (21, . . ., Zn) 

or this system can be observed along velocity 

20 = Zi' + pLi* (x1', . . ., q&‘) 

and stabilized by the control (4.2) 

3. The system (Flg.1) In the linear approximation can be reduced to 
the state xi= 0 in the finite time T by application of a sequence of 
impulses of the force u . 

Note. The considered rod system is a Sturm system [14]. The above 
derived conclusions are applicable to Sturm systems in general. 

The author Is Indebted to N.N. Krasovskll for valuable advice. 
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